Trong không gian với hệ trục Oxyz, viết phương trình mặt cầu có tâm thuộc mặt phẳng (Oxy) và đi qua 3 điểm A(-2;1;3), B(0;-1;1), C(-1;3;2).
A. ( x + 2 ) 2 + ( y - 1 ) 2 + z 2 = 9
B. ( x + 2 ) 2 + ( y + 1 ) 2 + z 2 = 14
C. ( x + 2 ) 2 + ( y - 1 ) 2 + z 2 = 14
D. ( x - 2 ) 2 + ( y + 1 ) 2 + z 2 = 9
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
A (1;-3;2), B (3;5;-2). Phương trình mặt phẳng trung
trực của AB có dạng x + ay + bz + c =0.
Khi đó a + b + c bằng
Trong không gian Oxyz, phương trình mặt phẳng qua ba điểm A(-3;0;0), B(0;-2;0), C(0;0;1) được viết dưới dạng ax+by-6z+c=0 . Giá trị của T=a+b-c là
A. -11
B. -7
C. -1
D. 11
Trong không gian Oxyz, phương trình mặt phẳng qua ba điểm A(-3;0;0), B(0;-2;0), C(0;0;1) được viết dưới dạng ax + by -6z + c=0. Giá trị của T=a+b-c là:
A. -11
B. -7
C. -1
D. 11.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 2 1 = y + 1 1 = z + 1 − 2 và Δ : x − 3 1 = y + 1 1 = z + 3 2 . Viết phương trình mặt phẳng (P) chứa d và tạo với tam giác một góc 30 ° . có dạng x + a y + b z + c = 0 với a , b , c ∈ ℤ khi đó giá trị a+b+c là
A. 8
B. -8
C. 7
D. -7
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1 ;0 ;1), B(0 ;-1 ;-3), C(3 ;2 ;5).
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Trong không gian Oxyz, cho ba điểm A(1; 2; 0), B(-2; 1; 3), C(7; -3; -6). Viết phương trình tham số của đường thẳng d đi qua trọng tâm G của tam giác ABC, đồng thời d song song với hai mặt phẳng (Oxy) và (Oxz)
A. x = 2 + t, y = 0, z = -1
B. x = -2 + t, y = 0, z = -1
C. x = 1 + 2t, y = 0, z = -t
D. x = 6 + t, y = 0, z = -3
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1;0;1), B(0;-1;-3), C(2;1;3)
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0