Trong không gian Oxyz, viết phương trình mặt phẳng (P) qua M(1;2;3) và cắt ba trục toạ độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
![]()
![]()
![]()
![]()
Trong không gian với hệ toạ độ Oxyz, gọi (α) là mặt phẳng qua G ( 1 ; 2 ; 3 ) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A,B, C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (α) có phương trình:
A. 3x + 6y + 2z + 18 = 0
B. 6x + 3y + 2z - 18 = 0
C. 2x + y + 3z - 9 = 0
D. 6x + 3y + 2z + 9 = 0
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng α đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng
![]()
![]()
![]()
![]()
Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-3;2), B(0;1;-1) và G(2;-1;1). Tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm là:

![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(2;2;-2), B(-3;5;1), C(1;1;-2).Tìm toạ độ trọng tâm G của tam giác ABC ?
A. G(0;2;-1)
B. G(0;2;3)
C. G(0;-2;-1)
D. G(2;5;-2)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
A (1;-2;0), B (-3;2;-4) và mặt phẳng (P): x + 2y + z - 3 = 0.
Gọi M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho tam giác
MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1
B. T = 2
C. T = 0
D. T = 3
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(2;0;0) , B(1;-4;0), C(0;-2;6) và mặt phẳng ( α ) : x + 2y + z- 5 = 0. Gọi H(a;b;c) là hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng ( α ) . Tính P = a - b + c.
A. 5
B. -3
C. 3
D. -1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;1), B(3;4;0) mặt phẳng (P): a x + b y + c z + 46 = 0 Biết rằng khoảng cách từ A, B đến mặt phẳng (P) lần lượt bằng 6 và 3. Giá trị của biểu thức T = a + b + c bằng
A. -3
B. -6
C. 3
D. 6