Trong không gian (Oxyz) một mặt phẳng α : 2x-3z+2=0. Vecto nào dưới đây là vectơ pháp tuyến của mặt phẳng
A. (2;-3;2)
B. (2;3;2)
C. (2;0;-3)
D. (2;2;-3)
Trong không gian Oxyz, cho mặt phẳng (P): 2x-y+3z-2=0. Mặt phẳng (P) có một vecto pháp tuyến là
A. n → =(1;-1;3)
B. n → =(2;-1;3)
C. n → =(2;1;3)
D. n → =(2;3;-2)
Trong không gian Oxyz, cho mặt phẳng (P): 2x - 3z + 1= 0. Tìm một vecto pháp tuyến của mặt phẳng (P)
A. (2;3;1)
B. (2;-3;1)
C. (2;0;-3)
D. (2;-3;0)
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng α : 2x+y-z+1=0 . Vectơ nào sau đây không là vecto pháp tuyến của mặt phẳng α
A. (4;2;-2)
B. (-2;-1;1)
C. (2;1;1)
D. (2;1;-1)
Trong không gian (Oxyz), cho mặt phẳng α 2x-y+3z+1=0. Véc tơ nào sau đây là vectơ pháp tuyến của mặt phẳng α
A. (-4;2;-6)
B. (2;1;-3)
C. (-2;1;3)
D. (2;1;3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-3z+1=0. Vecto nào dưới đây là 1 vecto pháp tuyến mặt phẳng (P)
A. (2;2;1)
B. (2;-3;1)
C. (2;2;-3)
D. (2;-2;-3)
Trong không gian (Oxyz) , cho mặt phẳng (P) có phương trình 2x+y-3z+1=0. Tìm một vecto pháp tuyến n của (P)
A. (-4;2;6)
B. (-6;-3;9)
C. (6;-3;-9)
D. (2;1;3)
Trong không gian Oxyz cho ba điểm A (0;2;-2),
B (-3;1;-1), C (3;-1;2). Điểm M (a;b;c) thuộc
mặt phẳng ( α ): 2x -y +2z + 7 = 0 sao cho biểu
thức 3 M A → + 5 M C → - 7 M C → đạt giá trị nhỏ nhất.
Tính a+b+c