Chọn B
Phương pháp:
Phương trình mặt cầu có tâm I(a,b,c) bán kính R là:
Cách giải:
Tâm mặt cầu là trung điểm của AB, có tọa độ là: I(-1;0;1)
Bán kính mặt cầu:
Chọn B
Phương pháp:
Phương trình mặt cầu có tâm I(a,b,c) bán kính R là:
Cách giải:
Tâm mặt cầu là trung điểm của AB, có tọa độ là: I(-1;0;1)
Bán kính mặt cầu:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A ( − 2 ; 1 ; 1 ) và B ( 0 ; − 1 ; 1 ) . Viết phương trình mặt cầu đường kính AB
A. ( x + 1 ) 2 + y 2 + ( z − 1 ) 2 = 8.
B. ( x + 1 ) 2 + y 2 + ( z − 1 ) 2 = 2.
C. ( x − 1 ) 2 + y 2 + ( z + 1 ) 2 = 2.
D. ( x − 1 ) 2 + y 2 + ( z + 1 ) 2 = 8.
Trong không gian Oxyz, cho hai điểm A(-3;2;1), B(1;4;-1). Phương trình mặt cầu đường kính AB là:
Trong không gian Oxyz, cho hai điểm A(6;-3;-1) và B(2;-1;7). Phương trình mặt cầu đường kính AB là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;3), B(5;4;-1). Phương trình mặt cầu đường kính AB là
Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Phương trình mặt cầu đường kính AB là
Trong không gian Oxyz, cho 2 điểm A(1;1;1), B(1;-1;3). Phương trình mặt cầu đường kính AB là
A. ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 8
B. ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 2
C. ( x + 1 ) 2 + y 2 + z 2 = 13
D. ( x + 1 ) 2 + y 2 + ( z + 2 ) 2 = 8
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và B(2;-l;4). Phương trình mặt cầu đường kính AB là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và B(2;-l;4). Phương trình mặt cầu đường kính AB là
Trong không gian Oxyz, cho 2 điểm A(2;-1;-3), B(0;3;-1). Phương trình mặt cầu đường kính AB là
A. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z - 2 ) 2 = 6
B. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 24
C. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z - 2 ) 2 = 4
D. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 6