Trong không gian Oxyz, cho các điểm A(6;0;0), B(0;3;0) và mặt phẳng (P): x-2y+2z=0. Gọi d là đường thẳng đi qua M(2;2;0), song song với (P) và tổng khoảng cách từ A, B đến đường thẳng d đạt giá trị nhỏ nhất. Vectơ nào dưới đây là một vectơ chỉ phương của d?
Trong không gian Oxyz, đường thẳng d song song với đường thẳng ∆ : x = - 2 + t y = - 1 - 2 t z = 3 + t có vecto chỉ phương là
Trong không gian Oxyz, đường thẳng d song song với đường thẳng ∆ : x = - 2 + t y = - 1 - 2 t z = 3 + t , có vec tơ chỉ phương là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P m m x + m m + 1 y + m - 1 2 z - 1 = 0 (m là tham số) và đường thẳng d có vec-tơ chỉ phương u → = ( 1 ; 2 ; 3 ) . Đường thẳng ∆ song song với mặt phẳng (Oxy), ∆ vuông góc với d và cắt mặt phẳng P m tại một điểm cố định. Tính khoảng cách h từ A(1;-5;0) đến đường thẳng ∆ .
A. h = 5 2
B. h = 19
C. h = 21
D. h = 2 5
Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm M(1; 2; 3) và song song với trục Oy có phương trình tham số là:
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm A(1;-2;3) và B(0;1;2). Đường thẳng d đi qua 2 điểm A, B có một vectơ chỉ phương là:
Trong không gian Oxyz, gọi d là đường thẳng đi qua M(0;0;2) và song song với mặt phẳng (P):x+y+z+3=0 sao cho khoảng cách từ A(5;0;0) đến đường thẳng d là nhỏ nhất. Một véc tơ chỉ phương của đường thẳng d là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 - t y = 3 z = - 1 + 2 t , vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng d?
A. (-1;3;2)
B. (1;20;-2)
C. (1;3;-1)
D. (1;0;2)
Trong không gian với hệ trục Oxyz , cho hai đường thẳng ( d 1 ) : x - 2 2 = y + 1 - 3 = z 4 và d 2 ; x = 2 + t y = 3 + 2 t z = 1 - t với t ∈ ℝ . Mặt phẳng song song với hai đường thẳng (d1),(d2) có một vectơ pháp tuyến nvới toạ độ là.
A. (-5;-6;7)
B. (5;-6;7)
C. (-5;6;7)
D. (-5;6;-7)