Đáp án C
Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c). Vì M(1;2;3) là trọng tâm của tam giác ABC nên ta có:
Vậy phương trình của mặt phẳng (P) là: x 3 + y 6 + z 9 = 1
Đáp án C
Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c). Vì M(1;2;3) là trọng tâm của tam giác ABC nên ta có:
Vậy phương trình của mặt phẳng (P) là: x 3 + y 6 + z 9 = 1
Trong không gian Oxyz cho điểm M(1;2;3). Phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tại A, B, C sao cho M là trong tâm của tam giác ABC là
Trong không gian Oxyz, viết phương trình mặt phẳng (P) qua M(1;2;3) và cắt ba trục toạ độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trọng tâm của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6x +3y-2z -6=0
B. x +2y+3z -14=0
C. x +2y+3z -11=0
D. x 1 + y 2 + z 3 = 3
Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;-2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC
A. 6x - 3y -2z - 6 = 0
B. x - 2y + 3z + 14 = 0
C. x 1 + y - 2 + z 3 = 3
D. x - 2y + 3z - 14 = 0
Trong không gian , cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6x + 3y - 2z - 6 = 0
B. x + 3y + 2z - 14 = 0
C. x + 3y + 2z - 11 = 0
D . x 1 + y 2 + z 3 = 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng α đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng
Trong không gian Oxyz cho điểm M (2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P)
A . 17 30 30
B . 13 30 30
C . 19 30 30
D . 11 30 30
Trong không gian Oxyz cho điểm M(2;1;5) Mặt phẳng (P) đi qua điểm M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P)
A. 17 30 30
B. 13 30 30
C. 19 30 30
D. 11 30 30
Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;2) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 2x + 2y + z - 8 = 0
B. 2x + 2y + z + 8 = 0
C. x 1 + y 2 + z 2 = 1
D. x + 2y + 2z - 9 = 0