Cho tam giác ABC vuông tại A, AB=a, BC= 2a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục BC.

![]()
![]()
![]()
Cho tam giác ABC vuông tại B có AC=2a, BC=a khi quay tam giác ABC quay quanh cạnh góc vuông AB thì đường gấp khúc ABC tạo thành một hình nón tròn xoay có diện tích xung quanh bằng
![]()
![]()
![]()
![]()
Trong không gian cho tam giác ABC vuông tại A có AB = 2a và BC = 2a. Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A . πa 3
B . 3 π a 3
C . 3 3 πa 3
D . 2 3 πa 3
Cho tam giác ABC vuông tại A, có AB=a, BA= a 10 Thể tích khối nón khi quay tam giác ABC quanh trục AC là:
![]()
![]()
![]()
![]()
Cho tam giác AOB vuông tại O, có O A B ^ = 30 0 và AB = a. Quay tam giác AOB quanh trục AO ta được một hình nón. Tính diện tích xung quanh S x q của hình nón đó.
A. S x q = πa 2 2
B. S x q = πa 2
C. S x q = πa 2 4
D. S x q = 2 πa 2
Cho tam giác ABC cân tại A, có cạnh A B = a 5 , B C = 2 a Gọi M là trung điểm của BC. Khi tam giác quay quanh trục MA ta được một hình nón và khối nón tạo bởi hình nón đó có thể tích là

![]()

![]()
Cho tứ diện ABCD có AD ⊥ (ABC), ABC là tam giác vuông tại B. Biết
BC=A, AB=a 3 , AD=3a Quay các tam giác ABC và ABD xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng




Cho tam giác ABC vuông cân tại B, cạnh AB = 2. Quay đường gấp khúc ACB quanh cạnh AB ta được hình nón. Tính diện tích xung quang của hình nón đó.
A . 8 π 2
B . 4 π 2
C . 4 π 3
D . 2 π 2
Cho tam giác đều ABC cạnh 1 và hình vuông MNPQ nội tiếp trong tam giác ABC(M ∈ AB, N ∈ AC, P,Q ∈ BC) . Gọi S là phần mặt phẳng chứa các điểm thuộc tam giác ABC nhưng không chứa các điểm thuộc hình vuông MNPQ. Thể tích của vật thể tròn xoay khi quay S quanh trục là đường thẳng qua A vuông góc với BC là:
A . 810 - 467 3 24 π
B . 4 3 - 3 96 π
C . 4 3 - 3 96
D . 54 - 31 3 12 π