1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
Cho nửa đường tròn đường kính AB và dây MN có độ dài bằng bán kính (M thuộc cung AN, M khác A, N khác B). Các tia AM và BN cắt nhau tại I, các dây AN và BM cắt nhau tại K.
a. Chứng minh rằng: IK vuông góc với AB
b. Chứng minh rằng:AK.AN+BK.BM=AB2
Cho đường tròn tâm O bán kính R,dây AB = R.căn 3 .Vẽ đường kính CD vuông góc AB(C thuộc cung AB lớn).Trên cung AC lấy M.Vẽ dây AN//CM.Tính MN
Cho (O) đường kính AB. M nằm chính giữa cung AB. Lấy N bất kì thuộc cung AM. AM cắt BN tại H, AN cắt BM tại C. Gọi hình chiếu vuông góc của H trên AB là K. MK cắt BN tại I. Chứng minh: a, C,H, K thẳng hàng. b, NK đi qua một điểm cố định. c, AH.AM + BH.BN không đổi. d, IH.BN=NH.IB Cho (O) đường kính AB. M nằm chính giữa cung AB. Lấy N bất kì thuộc cung AM. AM cắt BN tại H, AN cắt BM tại C. Gọi hình chiếu vuông góc của H trên AB là K. MK cắt BN tại I. Chứng minh:
a, C,H, K thẳng hàng
b, NK đi qua một điểm cố định
c, AH.AM + BH.BN không đổi
d, IH.BN=NH.IB
Cho nửa đường tròn (O;R), đường kính AB, dây MN =R( M thuộc cung AN), các tia AM giao BN tại I, AN giao BM tại K
a, CM I, M, K, N thuộc đường tròn.
b, CM IK vuông góc với AB
c, HA.HB=HI.HK
d, Tìm quỹ tích điểm I, điểm K khi M,N thay đổi trên đường tròn (O)
Từ A ngoài đường tròn tâm O, kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a• ( không đổi ) . Từ I bất ki trên cung nhỏ MN. Vẽ tiếp tuyến cắt AM , AN lần lượt tại B và C. OB và OC cắt đường tròn O tại D và E. Cm : Cung DE không đổi khi I chạy trên cung MN
Cho đường tròn (O) , đường kính AB .Vẽ 2 dây AM và BM song song với nhau sao cho sđ cung BM < 90. . Vẽ dây MD song song với AB . Dây AN cắt AB tại E . Đường thẳng qua E song song với AM cắt DM tại C . Chứng minh rằng
a) Cung AD = cung AN và AB \(\perp\)DN
b) BC là tiếp tuyến của (O)
cho đt (o) đường khính AB vẽ dây cung CD vuông góc với AB ở I ( I nằm giữa A và O ) lấy M trên cung nhỏ BC (M khắc B và C) AM cắt CD ở N. chứng minh: a. BMNI là tứ giác nội tiếp đường tròn b. AM*AN=AC^2 c. tâm đường tròn ngoại tiếp tam giác CMN thuocoj đương thẳng BC