Giải thích:
TXĐ: D = ℝ
Giả sử x ∈ D thì − x ∈ D
Ta có f − x = sin − 2 x = − sin 2 x = − f x
Vậy sin 2 x là hàm lẻ.
Chọn đáp án B.
Giải thích:
TXĐ: D = ℝ
Giả sử x ∈ D thì − x ∈ D
Ta có f − x = sin − 2 x = − sin 2 x = − f x
Vậy sin 2 x là hàm lẻ.
Chọn đáp án B.
1. Mệnh đề nào dưới đây sai ?
A. Hàm số y = tan x là hàm số lẻ. B. Hàm số y = sin x là hàm số lẻ
C. Hàm số y = Cot x là hàm số lẻ D. Hàm số y = Cos x là hàm số lẻ
2. Hàm số nào sau đây là hàm số lẻ?
A. y = Cos3x B. y = Sinx + Cos3x
C. y = Sinx + Tan3x D. Tan2x
3. Trong các hàm số sau, hàm số nào là hàm số chẵn
A. y = Cos2x B. y = Cot2x
C. y = tan2x D. y = sin2x
4. Trong các hàm số sau, hàm số nào là hàm số lẻ?
A. y = Sinx Cos3x
B. y = Cosx + Sin2x
C. y = Cosx + Sinx
D. y = - Cosx
5. Hàm số nào là hàm số chẵn ?
A. y = Cosx
B. y = Sin x/2
C. y = tan2x
D. y = Cotx
trong các hàm số sau đây , hàm số nào không tuần hoàn
a. y= x.sin x
b. y= cos 2x
c. y=sin(x-x/2)
d. y=1/sin2x
khẳng định nào sau đây là sai
a) Hàm số \(y=x^2+cosx\)là hàm số chẵn
b)hàm số\(y=|sinx-x|-|sinx+x|\)là hàm số lẻ
c) hàm số\(y=\frac{sinx}{x}\)là hàm số chẵn
d) hàm số y=sinx+2 là hàm số không chẵn không lẻ
Khẳng định nào sau đây là sai?
A. Hàm số y=cosx
có tập xác định là R
B. Hàm số y=cosx
có tập giá trị là [-1;1]
C. Hàm số y=cosx
là hàm số lẻ
D. Hàm số y=cosx tuần hoàn với chu kỳ 2π
Cho các hàm số lượng giác y = sin 2 x + tan x , y = cos 2 x . sin x , y = sin x + 2 , y = cos x . cos 2 x . Số hàm số lẻ có được từ các hàm số trên là
A. 0
B. 1
C. 2
D. 3
Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?
A. y=tanx+x
B. y=x2+1
C. y=cotx
D. y=\(\dfrac{\text{sinx}}{x}\)
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
24. Tìm GTLN của hàm số: \(y=3\cos\left(x-\dfrac{\pi}{2}\right)+1\)
26. a) Tìm GTLN của hàm số: \(y=\cos2x+\sin2x\)
b) Giải PT: \(\sin x+\sqrt{3}\cos x=1\)
Tìm đạo hàm của hàm số sau: y = sin ( cos 2 x ) . cos ( sin 2 x )