Bài 1: Chứng minh rằng ab(a2-b2)(4a2-b2) chia hết cho 5 với mọi số tự nhiên a,b.
Bài 2: Trong 100 số tự nhiên từ 1 đến 100 cần chọn n số (n>=2) sao cho 2 số phân biệt bất kì trong n số được chọn có tổng chia hết cho 6. Hỏi n lớn nhất có thể là bao nhiêu?
cho 100 số tự nhiên từ 1-100 cần chọn n số (\(2\le n,n\in N\)) sao cho 2 số phân biệt tùy ý từ n số đó được chọn có tổng luôn chia hết cho 6.Tìm n số lớn nhất để được n thỏa mãn điều kiện đã cho.
Trong 2009 số tự nhiên từ 1 đến 2009 chọn ra n số bất kì đôi một phân biệt (n>=2) sao cho tổng của chúng chia hết cho 8. Trong các cách trọn thỏa mãn yêu cầu trên số n lớn nhất có thể là bao nhiêu ?
Mọi người giúp mình với
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
Chứng minh rằng trong 8 số tự nhiên bất kì, mỗi số có 3 chữ số, bao giờ cũng có thể chọn được 2 số mà khi viết liền nhau ta thu được 1 số có 6 chữ số chia hết cho 7.
1.Cho 51 số nguyên dương khác nhau và đều nhỏ hơn 100. Chứng minh rằng có thể chọn ra 3 số a,b,c trong 51 số đã cho thỏa mãn hệ thức a=b+c
2.Tìm số tự nhiên n nhỏ nhất để các phân số \(\frac{n+7}{3};\frac{n+8}{4};...;\frac{n+2019}{2015};\frac{n+2020}{2016}\)
đều là các phân số tối giản
Cho 100 số nguyên dương bất kì. Chứng minh rằng chọn được các số trong những số đó có tổng chia hết cho 100.
tìm số tự nhiên n nhỏ nhất thỏa mãn cả ba điều kiện sau
n chia hết cho 7
n-35 chia hết cho 100
tổng các chữ số của n=35
Cho bảng 2 x n. Trên bảng điền 2n số thực dương sao cho tổng của các số trên 1 cột bằng 1. Chứng minh : Có thể chọn trên mỗi cột 1 số sao cho tổng các số đã chọn trên từng hàng nhỏ hơn bằng \(\frac{n+1}{4}\)