Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
~ Kammin Meau ~

Trên cùng một nửa mặt phẳng bờ chứa tia Oa, vẽ hình Ob, Oc sao cho aOb = 40o, aOc = 140o.

a. Tính số đo góc bOc

b. Vẽ tia Od là tia đối của tia Oc. Tia Oa có phải là tia phân giác của bOd không ? Vì sao ?

YunTae
15 tháng 5 2021 lúc 15:45

a) Ta có : aOb < aOc ( \(40^o< 140^o\))

⇒ Ob nằm giữa Oa và Oc 

⇒ aOb + bOc = aOc 

⇒ bOc = aOc - aOb = \(140^o-40^o=100^o\)

b) Có : Od là tia đối của Oc ⇒ Ob nằm giữa Oc và Od 

⇒ dOb + bOc = \(180^o\) ( 2 góc kề bù ) 

⇒ dOb = \(180^o\) - bOc = \(180^o-100^o=80^o\)

Lại có : bOd > bOa ( \(80^o>40^o\))

⇒ Oa nằm giữa Ob và Od 

⇒ dOa + aOb = dOb 

⇒ dOa = dOb - aOb = \(80^o-40^o=40^o\)

mà aOb = \(40^o\)(gt) 

⇒ Tia Oa là tia phân giác của bOd

Giải:

a) Vì +)Ob;Oc cùng ∈ 1 nửa mặt phẳng bờ chứa tia Oa

         +)\(a\widehat{O}b< a\widehat{O}c\) (40o<140o)

⇒Ob nằm giữa Oa và Oc

\(a\widehat{O}b+b\widehat{O}c=a\widehat{O}c\) 

    \(40^o+b\widehat{O}c=140^o\) 

              \(b\widehat{O}c=140^o-40^o\)  

              \(b\widehat{O}c=100^o\) 

b) Vì Od là tia đối của Oc

\(c\widehat{O}d=180^o\) 

\(d\widehat{O}b+b\widehat{O}c=180^o\) 

   \(d\widehat{O}b+100^o=180^o\)  

              \(d\widehat{O}b=180^o-100^o\) 

              \(d\widehat{O}b=80^o\) 

\(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\) 

    \(40^o+a\widehat{O}d=80^o\) 

              \(a\widehat{O}b=80^o-40^o\) 

               \(a\widehat{O}b=40^o\)

Vì +) \(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\) 

    +) \(b\widehat{O}a=a\widehat{O}d=40^o\) 

⇒Oa là tia p/g của \(b\widehat{O}d\) 

Chúc bạn học tốt!


Các câu hỏi tương tự
Bùi Thảo Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê Huy Thành
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Tranh Tử
Xem chi tiết