Qua D kẻ đường thẳng song song với AC
Xét tam giác BHD và EFC có: \(\widehat{DBH}=\widehat{CEF}\)( AB//EF, đồng vị)
BD=EC (gt)
\(\widehat{HDB}=\widehat{FCE}\)(HD//AC, đồng vị)
=> \(\Delta BHD=\Delta EFC\)=> EF=BH
Tương tự dựa vào song song và sole trong em tự chứng minh tam giác AHD= tam giác DGA
=> DG=AH
Vậy nên AB= AH+BH=EF+DG
Trà Vy 7B,lời giải đây nhé,ko có gì 2 lên lớp chỉ tiếp
Do \(HD\backslash\backslash AC\)
\(\Rightarrow\widehat{ADH}=\widehat{DAG}\left(1\right)\)(So le trong)
\(\Rightarrow\widehat{HAD}=\widehat{GDA}\)\(\left(2\right)\)(So le trong)
Từ (1),(2) và AD chung
\(\Rightarrow\Delta ADH=\Delta DAG\left(G.C.G\right)\)
P/S:cô thông cảm hộ em,bạn ấy(Vương Tuấn Khải) bắt em hoàn thiện bài của cô ý ah