Trên các cạnh góc vuông AB, AC của tam giác vuông cân ABC. Lất các điểm D và E sao cho AD =AE. Qua D kẻ đường thẳng vuông góc BE cắt BC ở K. Qua A kẻ đường thẳng vuông góc BE cắt BC ở H. Chứng minh : HK = HC
Gợi ý : Kéo dài AC cắt DK tại M
Có thể sử dụng đường trung bình
Cho tam giác ABC vuông cân đỉnh A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, sao cho AD=AE. Gọi I là giao điểm của BE và CD, chứng minh:
a, BE=CD
b, tam giác BID = tam giác CIE
c, AI là trung trực của đoạn thẳng BC
d, Qua D vẽ đường thẳng vuông góc với BE, cắt BE ở K, cắt AC ở H, chứng minh: A là trung điểm của đoạn thẳng HC
Cho tam giác ABC vuông tại A,có AB < AC. Vẽ AH vuông góc BC tại H.Trên tia đối của tia HA lấy điểm D sao cho HD=HA
a)C/m tam giác HCD=tam giác HCA
b)c/m BD vuông góc DC
c) Qua điểm A vẽ đường thẳng song song với BC,qua điểm c vẽ đường thẳng song song với cạnh AB,hai đường thẳng này cắt nhau tại E . C/m AE=BC
d) Gọi M là trung điểm cạnh HC, qua M vẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I .Từ H vẽ đường thẳng vuông góc với cạnh AB tại k. C/m K,H,I thẳng hàng
Cho tam giác ABC vuông tại A có AB<AC. Vẽ AH vuông góc với cạnh BC tại. Trên tia đối của tia AH lấy điểm Dsao cho DH=AH.
a) Chứng minh tam giác HCD= tam giác HCA
b)Chứng minh BD vuông góc với DC
c)Qua điểm Avẽ đường thẳng song song với cạnh BC, qua điểm Cvẽ đường thẳng song song với cạnh AB, hai đường thẳng này cắt nhau tại E. Chứng minh AE=BC
d)Gọi M là trung điểm cạnh HC, qua Mvẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I. Từ H vẽ đường thẳng vuông góc với cạnh AB tại K. Chứng minh ba điểm H,K,I thẳng hàng.
cho tam giác ABC vuông tại A, có AB > AC . Vẽ AH vuông góc vs BC tại H . Trên tia đối của HA lấy E sao cho HE = HA .
a, CMR: tam giác HCE = tam giác HCA
b, Qua A kẻ đường thẳng // vs BC . qua C vẽ đường thẳng // vs AB 2đường này cắt nhau tại M CMR: AM=BC
c, Gọi D là trung điểm của HC , qua D vẽ đường thẳng vuông góc vs HC cắt cạnh DC tại O , từ H vẽ đường thẳng vuông góc AB tại N . CMR : N,H,O thẳng hàng
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Bài 1:
Cho tam giác ABC vuông tại A, AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 2
Tam giác ABC vuông tại A có AB = AC. Lấy D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE. Đường thẳng qua D và vuông góc với BE cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 3
Cho tam giác ABC có I là trung điểm AB. Đường thẳng qua I và song song với BC cắt AC ở K. Đường thẳng qua K và song song với AB cắt BC ở H. Chứng minh:
a) KH = IB
b) AK = KC
c) IH // AC
d) H là trung điểm của BC
câu 1: cho tam giác ABC có A=110 độ, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK=MA.
a, tính số đo của góc ACK
b, vẽ về phía ngoài của tam giac ABC các đoạn thẳng AD,AE sao cho AD vuông góc với AB và AD=AB,AE vuông góc với AC và AE=AC. chứng minh rằng tam giác CAK=tam giác AED
c,, Chứng minh rằng MA vuông góc với DE
câu 2: cho tam giác ABC vuông tại A có AB=AC. lấy điểm D thuộc cạnh AB,điểm E thuộc cạnh AC sao cho AD=AE. đường thẳng đi qua D và vuông góc với BE cắt đường thẳng CA ở K. chứng minh rằng AK=AC
cho tam giác ABC vuông tại A. trên cạnh BC lấy điểm D sao cho BD = BA. tia phân giác của góc B cắt AC ở E. Qua C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. a) CM: tam giác BEA = tam giác BED b) CM: tam giác BHF = tam giác BHC c) CM: D,E,F thẳng hàng