Phương trình hoành độ giao điểm: x2 – 2x – 1 = 2x + 4
⇔ x 2 - 2 x - 1 - 2 x - 4 = 0 ⇔ x 2 - 4 x - 5 = 0 ⇔ [ x = - 1 ⇒ y = 2 x = 5 ⇔ y = 14
Vậy tọa độ giao điểm của hai đồ thị là (-1; 2) và ( 5; 14).
Phương trình hoành độ giao điểm: x2 – 2x – 1 = 2x + 4
⇔ x 2 - 2 x - 1 - 2 x - 4 = 0 ⇔ x 2 - 4 x - 5 = 0 ⇔ [ x = - 1 ⇒ y = 2 x = 5 ⇔ y = 14
Vậy tọa độ giao điểm của hai đồ thị là (-1; 2) và ( 5; 14).
Câu 14(1,5 điểm): a) Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau: y = - 2x + 5 ; y = x + 2 b) Tìm tọa độ giao điểm A của đường thẳng y = - 2x + 5 và y=x+2. c) Tính góc tạo bởi đường thẳng y = x + 2y với trục Ox. d) Xác định đường thẳng y = ax + b đi qua điểm A và song song với đường thẳng y = - 3x - 1
Câu 59. Trong mặt phẳng tọa độ Oxy, cho đường thẳng A:3x - 4y -31 = 0 và điểm A(1;-7). Tìm tọa độ tâm của các đường tròn tiếp xúc với A tại A và có bán kính R = 5.
A. 11(-2; –3), 12(4;–11).
B. 11(2;3), 12(-4;11).
C. 11(2;–3), 12(4;–11).
D. 11(-2;3), 12(4; -11).
hoành độ giao điểm của đường thẳng y= 1- x và Parabol y = x2 - 2x + 1
tọa độ giao điểm của đường thẳng d: y= -x + 4 và Parabol y = x2 - 7x + 12
Tọa độ giao điểm của đường thẳng d : x = 1 + 2 t y = 2 + 2 t và đường tròn (C): (x-1 ) 2 + (y-2 ) 2 = 32 là:
Trong phương vuông góc với Tọa độ Oxy, cho parabol (P): y = x² - 4mx + 3m² + 1, điểm A (0;3m) và đường thẳng (d): y = 2x + 3m-2 với m là tham số. Giả sử giao điểm của (d) và (P) là hai điểm M và N thì diện tích tam giác AMN bằng 4. Tìm giá trị của m
Giao điểm của parabol y = x 2 + 4 x - 6 và đường thẳng y = 2x + 2 là:
A. (2; 6) và (3; 8) B. (-4; -6) và (1; -1)
C. (1; -1) và (2; 6) D. (-4; -6) và (2; 6)
a) Lập phương trình đường thẳng (d) : y=ax+b , biết (d) đi qua K(1;-5) và vuông góc với đường thẳng (Δ) : y= -x+7
b) Tìm tọa độ giao điểm giữa (D) : y= -3x+3 với (P) : y= 5x^2+4x+3
Tọa độ giao điểm của parabol (P): y = x2 – 4x với đường thẳng (d): y = -x – 2 là:
A. M(-1; -1) và N(-2; 0).
B. M(1; -3) và N(2; -4).
C. M(0; -2) và N(2; -4).
D. M(-3; 1) và N(3; -5).
Bài 1. Xác định parabol $\left( P \right):y=a{{x}^{2}}+bx+c\,\,\left( a\ne 0 \right)$, biết đường thẳng $y=-2$ cắt $\left( P \right)$ tại hai điểm có hoành độ $-1$ và $3$, đồng thời hàm số có giá trị lớn nhất bằng $2$.
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox