Ta có :
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}....\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4....99}.\frac{4.5.6....101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
Ủng hộ mk nha !!! ^_^
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
dễ quá
k cho tui nháaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa