Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)
tính \(a=1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+\cdot\cdot\cdot+\frac{1}{32}\cdot\left(1+2+3+\cdot\cdot\cdot+32\right)\)
\(1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+\frac{1}{4}\cdot\left(1+2+3+4\right)+\cdot\cdot\cdot\frac{1}{20}\cdot\left(1+2+3+4+....+20\right)\)
Tính:
a) M=\(\frac{2\cdot2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+20012}}\)
b) N= \(1+\frac{1}{2\cdot\left(1+2\right)}+\frac{1}{3\cdot\left(1+2+3\right)+}+\frac{1}{4}\cdot\left(1+2+3+4\right)\)\(+...+\frac{1}{16}\cdot\left(1+2+3+4+...+16\right)\)
Giúp nha mình tick
A)\(2009^{\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-15^3\right)}\)
B)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
C)\(\left(\frac{1}{38}-1\right)\cdot\left(\frac{1}{37}-1\right)\cdot\left(\frac{1}{36}-1\right)\cdot...\cdot\left(\frac{1}{2}-1\right)\)
HELP ME!!!!!!!!!!!!!!!!!!!
Tính A=\(1+\frac{1}{2}\cdot\left(1+2+3\right)+\frac{1}{4}\cdot\left(1+2+3+4\right)+.........+\frac{1}{16}\cdot\left(1+2+3+.........+16\right)\)
A=\(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\cdot\cdot\left(1-\frac{1}{1+2+3+\cdot\cdot\cdot+2015}\right)\)
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
TÍNH NHANH
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right)\cdot\cdot\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)