\(M=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\frac{1}{3}\cdot M=\frac{1}{3}\cdot\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(\frac{1}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
\(\frac{1}{3}\cdot M-M=-\frac{2}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}-\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(-\frac{2}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}-\frac{1}{3^0}-\frac{1}{3^1}-\frac{1}{3^2}-...-\frac{1}{3^{2005}}\)
\(-\frac{2}{3}\cdot M=\frac{1}{3^{2006}}-\frac{1}{3^0}=\frac{1}{3^{2006}}-\frac{1}{1}=\frac{1}{3^{2006}}-1\Rightarrow M=\left(\frac{1}{3^{2006}}-1\right):\left(-\frac{2}{3}\right)\)
\(M=\left(\frac{1}{3^{2006}}-1\right)\cdot\left(-\frac{3}{2}\right)=\frac{1}{3^{2006}}\cdot\left(-\frac{3}{2}\right)-\left(-\frac{3}{2}\right)=-\frac{3}{3^{2006}\cdot2}-\left(-\frac{3}{2}\right)\)
Chúc bạn học tốt ^^!!!
\(M=\frac{1}{3^0}+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3M=3+1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3M-M=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^0}+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2M=3-\frac{1}{3^{2004}}\)
\(\Rightarrow M=\frac{3-\frac{1}{3^{2004}}}{2}\)