\(P=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\right)\)
tinh p
A = \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
Tính E=\(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}}\)
Tính \(E=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..+\frac{1}{99.100}}\)
CMR: \(\frac{1}{1.2}+\frac{1}{3.4}\)\(+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{51}+\frac{1}{52}\)\(+\frac{1}{53}+...+\frac{1}{100}\)
tim x biet:
: \(\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right).x=\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{99}+\frac{2012}{100}\)
tinh tong D= \(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}}\)
Tính:
\(P=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}}\)
\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b=\(\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
cmr:\(\frac{a}{b}\)là 1 số nguyên