đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
Vậy....
Đúng 0
Bình luận (0)
đặt dãy số là A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
=>2A=\(1+\frac{1}{2}+\frac{1}{2^2}+...\frac{1}{2^{2015}}\)
=>2A-A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
=>\(A=\left(2:2\right)-\frac{1}{2^{2016}}\)
=>A=1-1/22016
A=.....
Đúng 0
Bình luận (0)