\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}}\)
\(B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=2016\)
\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+\frac{2012}{4}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{1+\left(\frac{2014}{2}+1\right)+\left(\frac{2013}{3}+1\right)+\left(\frac{2012}{4}+1\right)+...+\left(\frac{1}{2015}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{\frac{2016}{2016}+\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=2016\)
Vậy \(B=2016\)
Có \(B=\frac{\frac{2015}{1}+\frac{2014}{2}+......+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}}\)
Xét mẫu số:
Đặt A là mẫu số; C là tử số
\(A=\frac{2015}{1}+\frac{2014}{2}+......+\frac{1}{2015}\)
\(=\left(\frac{1}{2015}+1\right)+\left(\frac{2}{2014}+1\right)+.........+\left(\frac{2015}{1}-2014\right)\)
\(=\frac{2016}{2015}+\frac{2016}{2014}+.........+\frac{2016}{2016}\)
\(=2016.\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+..........+\frac{1}{2}\right)\)
\(=2016.C\)
\(\Rightarrow B=\frac{2016.C}{C}=2016\)
Vậy B = 2016