1. \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
2. So sánh: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}\) và \(\dfrac{2008+2009}{2009+2010}\)
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
Cho A là tổng các phân số viết theo quy luật :
\(A=\frac{2009}{2}+\frac{2008}{2^2}+\frac{2007}{2^3}+...+\frac{2}{2^{2008}}+\frac{1}{2^{2009}}\). Hãy chứng tỏ rằng: 2008 < A < 2009
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=\frac{2009}{1}+\frac{2010}{2}+\frac{2011}{3}+...+\frac{4016}{2008}-2008\)
\(S=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
S=?
a, Tính nhanh :
\(\frac{2009\times(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008})}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
b, Cho \(\text{Q}=2+2^2+2^3+...+2^{10}\). Chứng tỏ rằng \(Q⋮3\).
Tinh\(\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}}\)
Giá trị của biểu thức \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)là \(A=.............\)
Tính B =\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Tính : \(B=\frac{1+2+2^2+2^3+......+2^{2008}}{1-2^{2009}}\)