\(B=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}< 0\)
\(\Rightarrow B^2=4-\sqrt{15}-2\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}+4+\sqrt{15}\)
\(=8-2\sqrt{4^2-\left(\sqrt{15}\right)^2}=8-2=6\)
\(\Rightarrow B=-\sqrt{6}\)
(Vì \(\sqrt{4-\sqrt{15}}< \sqrt{4+\sqrt{15}}\)nên B nhận dấu âm)