\(B=a\cdot\left(bz-cy\right)+b\cdot\left(cx-az\right)+c\cdot\left(ay-bx\right)\)
\(=a\cdot bz-a\cdot cy+b\cdot cx-b\cdot az+c\cdot ay-c\cdot bx\)
\(=abz-acy+bcx-abz+acy-bcx\)
\(=0\)
\(B=a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)
\(=abz-acy+bcx-baz+cay-cbx=0\)
Vậy biểu thức B nhận giá trị là 0
\(B=a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)
\(B=abz-acy+bcx-baz+cay-cbx\)
\(B=\left(abz-baz\right)+\left(-acy+cay\right)+\left(bcx-cbx\right)\)
\(B=0\)
Vậy giá trị biểu thức B là 0.
B = a ( bz - cy ) + b ( cx - az ) + c ( ay - bx )
B = abz - acy + bcx - baz + cay - cbx
B = ( abz - baz ) + ( -acy + cay ) + ( bcx - cbx )
= 0 + 0 + 0
= 0