\(a\)
\(\frac{4096.81.59049}{2176782336}\)
\(b\)
\(\frac{2^{13+5}}{2^{10+2}}\)=\(\frac{2^{18}}{2^{12}}\)
a) \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(4^6.9^5.3^2\right).3^2}{\left(6^2\right)^6}=\frac{36^6.3^2}{36^6}=3^2=9\)
b) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5.\left(2^8+1\right)}{2^2.\left(2^8+1\right)}=\frac{2^5}{2^2}=2^3=8\)
c) \(\frac{21^2.14.125}{35^3.6}=\frac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}=3\)
d)\(\frac{8^{10}+4^{10}}{4^{10}+2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{2^{10}.\left(2^{10}+1\right)}=\frac{4^{10}}{2^{10}}=2^{10}=1024\)
e)\(\frac{45^3.20^4.18^2}{180^5}=\frac{45^3.5^4.4^4.2^2.9^2}{45^5.4^5}=\frac{\left(45^3.5^2.9^2\right).\left(4^4.2^2\right).5^2}{45^5.4^5}=5^2=25\)