\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\frac{99}{202}\)
\(=\frac{66}{101}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(\frac{4}{3}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(\frac{4}{3}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\)
\(A=\left(\frac{1}{2}-\frac{1}{101}\right).\frac{3}{4}\)
\(A=\frac{99}{202}.\frac{3}{4}=\frac{297}{808}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(\Rightarrow A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{98.101}\right)\)
\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{98}-\frac{1}{101}\right)\right]\)
\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{101}\right)\right]\Rightarrow A=4\left(\frac{1}{3}.\frac{99}{202}\right)\Rightarrow A=4.\frac{33}{202}\)\(\Rightarrow A=\frac{66}{101}\)