A=1+1/2+1/2^2+...+1/2^2012
2A=2(1+1/2+1/2^2+...+1/2^2012
2A=2+1+1/2+1/2^2+...+1/2^2011
2A-A=2+[(1+1/2+1/2^2+...+1/2^2011)-(1+1/2+1/2^2+...+1/2^2011)]-1/2^2012 (mình làm tắt 1 bước)
A=2-1/2^2012 ! CÒN LẠI TỰ TÍNH
A=\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
2A=\(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
2A-A=A=\(\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
A=\(2-\frac{1}{2^{2012}}\)