Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
༺Tiểu Bạch Dương༻

Tính:

A = \(\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

B = \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

Ngô Chi Lan
29 tháng 8 2020 lúc 20:32

a) \(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(A=\sqrt{16+8\sqrt{3}+3}-\sqrt{3+2\sqrt{3}+1}\)

\(A=\sqrt{\left(4+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=4+\sqrt{3}-\sqrt{3}-1=3\)

b) \(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(B=\sqrt{25+10\sqrt{2}+2}-\sqrt{16+8\sqrt{2}+2}\)

\(A=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(A=5+\sqrt{2}-4-\sqrt{2}=1\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
29 tháng 8 2020 lúc 20:39

\(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+8\sqrt{3}+16}-\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot4+4^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}+1^2}\)

\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}+4-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}+4-\sqrt{3}-1=3\)

\(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=\sqrt{2+10\sqrt{2}+25}-\sqrt{2+8\sqrt{2}+16}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot5+5^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot4+4^2}\)

\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)

\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|\)

\(=\sqrt{2}+5-\left(\sqrt{2}+4\right)\)

\(=\sqrt{2}+5-\sqrt{2}-4=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lương Ngọc Anh
Xem chi tiết
Ling ling 2k7
Xem chi tiết
manh
Xem chi tiết
Ly Ly
Xem chi tiết
Đỗ Minh Anh
Xem chi tiết
trang nguyễn
Xem chi tiết
Oriana.su
Xem chi tiết
Ngân Hà Đặng
Xem chi tiết
Nguyễn Thị Thái Hà
Xem chi tiết