b) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2007}-\sqrt{2006}\)
\(=\sqrt{2007}-1\)
b) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2007}-\sqrt{2006}\)
\(=\sqrt{2007}-1\)
Rút gọn các biểu thức sau:
a,\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
b,\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
c,\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 1. So sánh
a) \(\sqrt{2009}-\sqrt{2008}\)và \(\sqrt{2007}-\sqrt{2006}\)
b) \(\sqrt{11+\sqrt{96}}\)và \(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
Bài 2. Tính tổng
\(T=\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
ai cứu mk ikk
a)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{24}+\sqrt{25}}\)
b)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
a) \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}+\frac{12}{\sqrt{6}-3}-\sqrt{6}\)b)\(\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{\sqrt{3}}{2-\sqrt{6}}+\frac{\sqrt{3}}{2+\sqrt{6}}\right)-\frac{1}{\sqrt{2}}\)c) \(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right)\frac{1}{\sqrt{3}+5}\)d) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2007\sqrt{2006}}< 2\)
Tính:
a, \(\frac{2}{5+2\sqrt{6}}+\frac{20}{\sqrt{6}-1}+\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b,\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)
Tính giá trị biểu thức:
\(\text{a) }\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{2010}+\sqrt{2011}}\)
\(\text{b) }\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(\text{c) }\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{+1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
1. Tính:
a) \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b) \(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
c) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
d) \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)