\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
hok tốt!!
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
Vậy \(A=1-\frac{1}{2^{100}}\)
\(A=\)nhưu trên
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(=>A-2A=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
=>\(-A=\frac{1}{2^{100}}-1=\frac{1-2^{100}}{2^{100}}\)
=>\(A=\frac{2^{100}-1}{2^{100}}\left(đúng\right)ko\)
A=\(1-\frac{1}{2^{100}}\)
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\) (1)
\(2.A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(2)
Từ (1) và (2) => ta có :
\(2.A-A=1-\frac{1}{2^{100}}\Rightarrow A=1-\frac{1}{2^{100}}\)
Vậy A = \(1-\frac{1}{2^{100}}\)