A) A= -1^2+2^2-3^2+4^2...99^2+100^2
A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )
= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )
= 1 + 2 + 3 + 4 + ... + 99 + 100
= \(\frac{100.101}{2}=5050\)
Xét 2 trường hợp :
Nếu n chẵn thì : A = ( 22 - 12 ) + ( 42 - 32 ) + ... + [ n2 - ( n - 1 )2 ]
= 1 + 2 + 3 + 4 + ... + ( n - 1 ) + n
= \(\frac{n.\left(n+1\right)}{2}\)
Nếu n lẻ thì : A = ( 22 - 12 ) + ( 42 - 32 ) + ... + [ ( n - 1 )2 - ( n - 2 )2 ] - n2
= 1 + 2 + 3 + 4 + ... + ( n - 1 ) - n2
= \(\frac{n.\left(n-1\right)}{2}-n^2=-\frac{n.\left(n+1\right)}{2}\)