\(A=13\cdot15+15\cdot17+17\cdot19+...+99\cdot101\)
\(1:A=1:\left(13\cdot15+15\cdot17+...+99\cdot101\right)\)
\(\frac{1}{A}=1:\left(13\cdot15\right)+1:\left(15\cdot17\right)+...+1:\left(99\cdot101\right)\)
\(\frac{1}{A}=\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+...+\frac{1}{99\cdot101}\)
\(\frac{2}{A}=\frac{2}{13\cdot15}+\frac{2}{15\cdot17}+...+\frac{2}{99\cdot101}\)
\(\frac{2}{A}=\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{2}{A}=\frac{1}{13}-\frac{1}{101}\)
\(\frac{2}{A}=\frac{88}{1313}\)
\(A=2:\frac{88}{1313}\)
\(A=\frac{1313}{44}\)
Chắc sai =))