\(\frac{2003}{1\cdot2}+\frac{2003}{2\cdot3}+...+\frac{2003}{2002\cdot2003}\)
\(=2003\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2002\cdot2003}\right)\)
\(=2003\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(=2003\cdot\left(1-\frac{1}{2003}\right)\)
\(=2003\cdot\frac{2002}{2003}\)
\(=\frac{2003\cdot2002}{2003}\)
\(=2002\)