Có : \(x-y=7\Rightarrow x^2-2xy+y^2=49\)
\(\Rightarrow2xy=16\Rightarrow xy=16\)
Lại có :
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=7.\left(65+16\right)=7.81=567\)
Có :\(x^3-y^3\)=\(\left(x-y\right)\)\(\left(x^2+xy+y^2\right)\)(1)
Có \(x-y=7\)
=> \(\left(x-y\right)^2\)=\(7^2\)
\(x^2-2xy+y^2\)= \(49\)
=>\(65-2xy\)=\(49\)
\(2xy\)\(=\)\(65-49\)
\(2xy=\)\(16\)
\(xy=16:2\)
\(xy=8\)
\(Thay\)\(vào\)\(\left(1\right)\)\(ta\)\(có\)
\(x^3-y^3\)=\(7.\left(65+8\right)\)
\(x^3-y^3=7.73\)
\(x^3-y^3=511\)