=\(\sqrt{2+\sqrt{3}}\) \(.\) \(\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)
=\(\sqrt{4-\left(\sqrt{3}\right)^2}\)
=\(\sqrt{4-3}\)
=\(\sqrt{1}\)
= \(1\)
=\(\sqrt{2+\sqrt{3}}\) \(.\) \(\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)
=\(\sqrt{4-\left(\sqrt{3}\right)^2}\)
=\(\sqrt{4-3}\)
=\(\sqrt{1}\)
= \(1\)
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
tính: R=\(\sqrt{2+\sqrt{3}}+\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2\sqrt{2+\sqrt{2+\sqrt{3}}}}+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
1. Tính:
\(\left(3\sqrt{2}+4\sqrt{3}\right)^2-\left(2\sqrt{2}+3\sqrt{3}\right)^2\)
2. Rút gọn:
\(\frac{x-\sqrt{x}+12}{3\sqrt{x}-12}\)
Giúp mình nha! :))
1. Tính:
\(\left(3\sqrt{2}+4\sqrt{3}\right)^2-\left(2\sqrt{2}+3\sqrt{3}\right)^2\)
2. Rút gọn:
\(\frac{x-\sqrt{x}+12}{3\sqrt{x}-12}\)
Giúp mình nha! :))
cho \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
CMR: \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Cho \(\sqrt{x^2+\sqrt[3]{x^4}y^2}+\sqrt{y^2+\sqrt[3]{x^2y^4}=a}\)
Chứng minh rằng: \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
Tính:\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)