TÍNH TỔNG:
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
Tính tổng :
\(S=\frac{1}{2013-1}+\frac{2}{2013+1}+\frac{2^2}{2013^2+1}+\frac{2^3}{2013^{2^2}+1}+.....+\frac{2^{n+1}}{2013^{2^n}+1}\)
Tính : \(\frac{1}{3+1}+\frac{2}{3^2+1}+\frac{4}{3^4+1}+...+\frac{2^n}{3^{2^n}+1}\)
Tính tổng của B :B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
HD:\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
\(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{n}{2^n}+...+\frac{2017}{2^{2017}}.\)
So sánh tổng sau với 2.
giúp mình với nhanh nha, mai nộp rồi!!!
1. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
biết \(m+n+p=0\)
2. Tính:
a) \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
b) \(B=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(9^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(10^4+\frac{1}{4}\right)}\)
(\(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+....+\frac{2}{n-2}+\frac{1}{n-1}\)):\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{n}\)
tính
F=\(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^n}\)
Rút gọn biểu thức:
\(B=\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\) + \(\frac{1}{n}\) )