\(2A=2+2^2+2^3+...+2^{2011}\)
\(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-1\)
Tính tổng:
$A=2^0+2^1+2^2+...+2^{2010}$A=20+21+22+...+22010
Câu hỏi tương tự Đọc thêmToán lớp 6Nguyễn Đắc Phúc An Thằng này bị dean à
=>A=1+21+22+...22010
=>2A=2(1+21+22+...22010)
=>2A=2.1+2.21+2.22+...+2.22010
=>2A=2+22+23+...+22011
=>2A-A=(2+22+23+...+22011)-(1+21+22+...22010)
=>A=22011-1
Ta có:
=>A=1+21+22+...22010
=>2A=2(1+21+22+...22010)
=>2A=2.1+2.21+2.22+...+2.22010
2A=2+22+23+...+22011
2A-A=(2+22+23+...+22011)-(1+21+22+...22010)
=>A=22011-1
Vậy......