Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Tính :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{99.100}\)
Tính A biết :
\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{98.99}\right)\left(1-\frac{2}{99.100}\right)\)
Tính
A=\(\frac{1.98+2.97+3.96+...+98.1}{1.2+2.3+3.4+...+98.99}\)
B=\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+\frac{1}{367}+...< \frac{1}{4}\)
Tìm \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Chứng minh rằng: \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{3!}+...+\frac{99.100-1}{100!}
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
CMR :
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+....+\frac{99.100-1}{100!}< 2\)
Cho \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
So sánh A với 1