a) \(A=1^2+2^2+3^2+...+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+n\left[\left(n+1\right)-1\right]\)
\(=\left[1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
\(=n\left(n+1\right)\left(n+2\right)-\frac{n\left(n+1\right)}{2}\)
\(=\left[n\left(n+1\right)\right]\left[\left(n+2\right)-\frac{1}{2}\right]\)
\(=n\left(n+1\right)\left(n+1,5\right)\)