Đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
Nên \(2.A=6+3+\frac{3}{2}+....+\frac{3}{2^8}\)
Suy ra \(2.A-A=6-\frac{3}{2^9}\Rightarrow A=6-\frac{3}{2^9}\)
Vậy giá trị biểu thức là : \(6-\frac{3}{2^9}\)
đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(A=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)( 1 )
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(B=2-\frac{1}{2^9}\)
\(\Rightarrow A=3.\left(2-\frac{1}{2^9}\right)\)
\(\Rightarrow A=6-\frac{3}{2^9}\)