So sánh :
Chứng tỏ rằng :
\(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)
Chứng tỏ rằng:
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}+\frac{1}{64}>4\)
Hãy chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Cho \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)\(\frac{1}{50}\)
Hãy chứng tỏ rằng \(\frac{7}{12}< A< \frac{5}{6}\)
chứng tỏ rằng : \(\frac{\text{1}}{2}\) + \(\frac{\text{1}}{3}\) + \(\frac{\text{1}}{4}\) + ..... + \(\frac{\text{1}}{63}\) > 2
Chứng tỏ:
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Giải chi tiết giúp mk nka
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Chứng minh:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
chứng tỏ rằng :
a) \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{10}}>\frac{1}{2^{11}}\)
b) \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}>\frac{1}{100}\)