=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{999}-\frac{1}{1000}+1\)
=\(\frac{1}{1}-\frac{1}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(1-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
= \(\frac{1}{1}-\frac{1}{1000}+1\)
= \(\frac{999}{1000}+1\)
= \(\frac{999}{1000}+\frac{1000}{1000}\)
= \(\frac{1999}{1000}\)
a=1/1*2+1/2*3+1/3*4+...+1/999*1000+1=1999/1000