Ta có:
A=2+2^2+2^3+....+2^99+2^100
=>2A=2^2+2^3+2^4+....+2^100+2^101
=>2A-A=(2^2+2^3+2^4+....+2^101)-(2+2^2+2^3+....+2^99)
Phá ngoặc ra, ta được:
A=2^101-2.
P/s:Nếu bạn có máy tính cầm tay, bấm 2^100-2 bằng bao nhiêu nhé !!!Chúc bạn học tốt.
Ta có :
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{100}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
huyenkemdau:
A = 2 + 22 + 23 + ... + 299 + 2100
2A = 22 + 23 + 24 + ... + 2100 + 2101
2A - A = (22 + 23 + 24 +...+ 2100) - (2 + 22 + 23 +...+ 2100)
=> A = 2100 -2
Vậy A = 2^100 - 2
Tham khảo nha!
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+...+2^{101}\right)-\left(2+2^2+2^3+2^4+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Chúc bạn học tốt_
A=2+2^2+2^3+2^4+...+2^100
2A=2^2+2^3+2^4+...+2^100+2^101
2A-A=(2^2+2^3+2^4+...+2^100+2^101)-(2+2^2+2^3+2^4+...+2^100)
A=2^101-2
Vậy A =2^101-2