=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+.......+\(\frac{1}{2016}\)-\(\frac{1}{2017}\)+1
=\(\frac{1}{1}\)-\(\frac{1}{2017}\)+1
=\(\frac{2016}{2017}\)+1
=\(\frac{1}{2017}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}+1\)
\(=1-\frac{1}{2017}+1\)
\(=\frac{2016}{2017}+1\)
\(=\frac{4033}{2017}\)
bạn ơi 1 phần 1 nhân 2 tương tự như câu khác
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2016\times2017}+1\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2016}-\frac{1}{2017}\right)+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+1\)
\(=1-\frac{1}{2017}+1\)
\(=\frac{2016}{2017}+1\)
\(=1\frac{2016}{2017}\)