Gọi S là tập các giá trị dương của tham số m sao cho hàm số y = x 3 - 3 m x 2 + 27 x + 3 m - 2 đạt cực trị tại x 1 , x 2 thỏa mãn x 1 , x 2 ≤ 5 . Biết S = (a;b]. Tính T = 2b - a.
A. T = 51 + 6
B. T = 61 + 3
C. T = 61 - 3
D. T = 51 - 6
Gọi S là tập các giá trị dương của tham số m sao cho hàm số y = x 3 - 3 m x 2 + 9 x - m đạt cực trị tại x 1 , x 2 thỏa mãn x 1 - x 2 ≤ 2 . Biết S=(a;b]. Tính T=b-a
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Cho hàm số y = ln ( 2 x - a ) - 2 m ln ( 2 x - a ) + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + . . . + log . . . 2 ( x 2 + a 2 ) - ( 2 n + 1 - 1 ) ( log 2 x a + 1 ) = 0
(với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thoả mãn m a x [ 1 ; e 2 ] y = 1 . Số phần tử của S là
A. 0
B. 1
C. 2
D. Vô số
Cho phương trình log 2 2 x - 4 log 2 x - m 2 - 2 m + 3 = 0 .
Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt x 1 , x 2 thỏa mãn x 1 2 + x 2 2 = 68 . Tính tổng các phần tử của S
A. -1
B. -2
C. 1
D. 2
Biết rằng phương trình 2 x . 3 2 x + 1 x + 2 = 6 có hai nghiệm phân biệt là x1; x2. Tính giá trị của biểu thức S = x1 + x2
A. S = log 2 3 2
B. S = log 2 2 3
C. S = log 3 3 2
D. S = log 3 2 3
Biết a b (trong đó a b là phân số tối giản, a , b ∈ N * ) là giá trị thực của tham số m để hàm số y = 2 x 3 - 3 m x 2 - 6 ( 3 m 2 - 1 ) x + 2018 có hai điểm cực trị x1;x2 thỏa mãn x 1 x 2 + 2 ( x 1 + x 2 ) = 1 . Tính P=a+2b.
Gọi x 1 , x 2 là 2 nghiệm của phương trình 4 x + 1 - 5 . 2 x + 1 + 4 = 0 . Khi đó giá trị S = x 1 + x 2 là
A. -1
B. 0
C. 1
D. 2
Gọi x 1 , x 2 là 2 nghiệm của phương trình 4 x + 1 - 5 . 2 x + 1 + 4 = 0 . Khi đó giá trị S = x 1 + x 2 là
A.-1
B.0
C.1
D.2