\(S=\frac{3}{\left(1\times2\right)^2}+\frac{5}{\left(2\times3\right)^2}+...+\frac{201}{\left(100\times101\right)^2}\)
\(=\frac{2^2-1^2}{\left(1\times2\right)^2}+\frac{3^2-2^2}{\left(2\times3\right)^2}+...+\frac{101^2-100^2}{\left(100\times101\right)^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{100^2}-\frac{1}{101^2}\)
\(=1-\frac{1}{101^2}\)
\(=\frac{10200}{10201}\)