M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)4/1.3 + 4/3.5 + 4/5.7 + ... + 4/2015.2017
M = \(2.\frac{2}{1.3}+2.\frac{2}{3.5}+2.\frac{2}{5.7}+...+2.\frac{2}{2015.2017}\) 2 . 2/1.3 + 2 . 2/3.5 + 2 . 2/5.7 + ... + 2 . 2/2015.2017
M = 2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2015.2017 )
M = 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2015 - 1/2017 )
M = 2 . ( 1 - 1/2017 )
M = 2 . 2016/2017
M = 4032/2017
\(M=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=\frac{4032}{2017}\)
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)
\(M=4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\right)\)
\(M=4.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015.2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=2.\frac{2016}{2017}\)
\(M=\frac{4032}{2017}\)
\(M=\frac{4}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\frac{2}{2015.2017}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=2.\left(1-\frac{1}{2017}\right)\)
\(=2.\frac{2016}{2017}\)
\(=\frac{4032}{2017}\)
k mk nha
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)
\(M=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)
\(M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(M=1-\frac{1}{2017}\)
\(M=\frac{2016}{2017}\)