\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1000-999}{999.1000}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{1000}{999.1000}-\frac{999}{999.1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}=\frac{999}{1000}\)
1/1x2 = 1/1 - 1/2
1/2x3 = 1/2 - 1/3
...
=> 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/999 x 1000
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/999 - 1/1000
= 1/1 - 1/1000 = 999/1000