3B=3+32+33+......+3101
3B-B=3101-1
2B=3101-1
\(B=\frac{3^{101}-1}{2}\)
\(B=1+3+3^2+........+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+.....+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2+3^3+..+3^{101}\right)-\left(1+3+3^2+...........+3^{100}\right)\)
\(\Rightarrow2B=1-3^{101}\)
\(\Rightarrow B=\frac{1-3^{101}}{2}\)
nếu ai đọc bài này thấy đúng thì k cho mh nhacacs bạn
đặt \(A=1+3+3^2+...+3^{100}\)
ta có : \(3A=3\cdot\left(1+3+3^2+...+3^{100}\right)\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A=1+3+3^2+3^3+...+3^{101}-1\)
\(\Rightarrow3A=A+3^{101}-1\)
\(2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
vậy \(1+3+3^2+...+3^{100}=\frac{3^{101}-1}{2}\)
B= 1+3+32+...+3100
3B=3(1+3+32+...+3100)
3B=3.1+3.3+3.32+...+3.3100
3B=3+32+33+...+3101
3B-B=(3+32+33+...+3101)-(1+3+32+...+3100)
2B=3101-1
B=\(\frac{3^{101}-1}{2}\)
100 - 100 + 666 - 555 + 111 - 111 + 111 - 222
= 0 + 666 - 555 + 111 - 111 + 111 - 222
= 666 - 555 + 111 - 111 + 111 - 222
= 111 + 111 - 111 + 111 - 222
= 222 - 111 + 111 - 222
= 111 + 111 - 222
= 222 - 222
= 0
Chuc ban hoc tot
Ta có:
B= 1+3+32+...+3100
3B=3(1+3+32+...+3100)
3B=3.1+3.3+3.32+...+3.3100
3B=3+32+33+...+3101
3B-B=(3+32+33+...+3101)-(1+3+32+...+3100)
2B=3101-1
B=3101-1/2
Vậy...