\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
\(A=2+\frac{1}{2^{98}}\)
Vậy: \(A=2+\frac{1}{2^{98}}\)
Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow B=2-\frac{1}{2^{100}}\)
\(\Rightarrow A=2\)
Vậy A = 2
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}+\frac{1}{2^{101}}\)
Suy ra \(2.A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
Nên \(2.A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}\right)\)
Khi đó \(A=2-\frac{1}{2^{101}}\)
Vậy \(A=2-\frac{1}{2^{101}}\)
A=1+1/2+1/2^2+...+1/2^100+1/2^100
2A=2+1+1/2+...+1/2^99+1/2^99
2A-A=2-1+1-1/2+1/2-1/3+...+1/2^99-1/2^100+1/2^99-1/2^100
A=2+1/2^99-1/2^100*2
A=2+1/2^99-1/2^99
A=2
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
=> \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
=> \(A=2A-A=2+\frac{1}{2^{99}}-\frac{1}{2^{100}}-\frac{1}{2^{100}}\)
\(A=2+\frac{1}{2^{99}}-\frac{1}{2^{99}}\)
\(A=2\)
Vậy \(A=2\)
(Câu trả lời hồi nãy mình làm sai nha!)