\(A=1+7+7^2+7^3+...+7^{2016}\)
\(7A=7\left(1+7+7^2+...+7^{2016}\right)\)
\(7A=7+7^2+7^3+...+7^{2017}\)
\(6A=7A-A=7+7^2+7^3+...+7^{2017}-1-7-7^2-...-7^{2016}\)
\(6A=7^{2017}-7\)
\(A=\left(\frac{7^{2017}-7}{6}\right)\)
\(\left(\frac{7^{2017}-7}{6}\right)\)
A= 1+7+72+73+....+72016
7A=7(1+7+72+...+72016)
7A=7+72+73+...+72017
6A=7A−A=7+72+73+...+72017−1−7−72−...−72016
6A=72017−7
A=(72017−7) / 6